Powers
The power function is a function with a variable raised to a fixed real number. Usually these functions are already implemented in the C language. However, for numerical reasons and efficiency PINS redefines them
Power 1 regular
\[x^+ \approx \pow_{1,h}(x)\DEF
\begin{cases}
\dfrac{\epsilon}{1-z} & x<0 \\[1em]
\dfrac{a_0+z(a_1+z(a_2+z(a_3+a_4 z)))}{(1+z)^3} & \textrm{otherwise}
\end{cases}
\qquad
z = \dfrac{x}{h}\]
\[ a_0 = \epsilon,\qquad
a_1 = 4\epsilon,\qquad
a_2 = 7\epsilon,\qquad
a_3 = 8\epsilon,\qquad
a_4 = 1-20\epsilon\]
which is continous up to the third derivative included, \(\epsilon<1/20\).
Power2 regular
\[ (x^+)^2\approx \pow_{2,h}(x)\DEF
\begin{cases} \dfrac{\epsilon}{1-z} & x<0 \\[1em]
\dfrac{\epsilon(1+z(3+4z(1+z))) + (1-12\epsilon)z^4}{(1+z)^2} & \textrm{otherwise}
\end{cases}\]
which is continous up to the third derivative included, , \(\epsilon<1/12\).
Power4 regular
\[(x^+)^4 \approx \pow_{4,h}(x)\DEF
\begin{cases}
\epsilon\exp(z) & x<0 \\\\[0.5em]
\epsilon+z(a+z(b+z(c+zd))) & \textrm{otherwise}
\end{cases}\]
\[ a = \epsilon,\qquad
b = (1/2)\epsilon,\qquad
c = (1/6)\epsilon,\qquad
d = 1-(5/3)\epsilon\]
\(\epsilon\) max \(3/10\) to hase asymthotically \(x^4/2\)