Wall
Wall Regular
The Wall is a function that is
\[
w(-\infty) = 0,\qquad w(0)=\epsilon, \qquad w(h)=1,\qquad w(\infty)=\infty
\]
and grows quadratically for \(x>0\). It is a linear combination of lines and hyperbolas:
\[
w(x) \DEF
\begin{cases}
\dfrac{\epsilon}{1-z} & x < 0 \\[1em]
\epsilon + a z \left( z-\dfrac{4}{3} \right) +
\dfrac{bz}{\frac{1}{4}+z} +
\dfrac{cz}{\frac{1}{2}+z} +
\dfrac{dz}{\frac{3}{4}+z} +
\dfrac{ez}{1+z}
& \textrm{otherwise},
\end{cases}
\]
where \(z\DEF x/h\) and the coefficients \(a\), \(b\), \(c\), \(d\) and \(e\) are defined as
\[
\begin{align*}
a &\DEF \dfrac{315}{104} - \dfrac{1551}{208}\epsilon, \\[0.5em]
b &\DEF \dfrac{385}{3328} - \dfrac{10055}{19968}\epsilon, \\[0.5em]
c &\DEF \dfrac{243}{13}\epsilon - \dfrac{105}{26}, \\[0.5em]
d &\DEF \dfrac{42525}{3328} - \dfrac{462105}{6656}\epsilon, \\[0.5em]
e &\DEF \dfrac{1882}{39}\epsilon - \dfrac{70}{13}
\end{align*}
\]
The result is shown in Figure XO:fig:wall. The first and second derivative are respectively:
\[
\begin{align*}
hw'(x)&=
\begin{cases}
\dfrac{e}{(1+z)^2}+\dfrac{12d}{(3+4z)^2}+\dfrac{2c}{(1+2z)^2}+\dfrac{4b}{(1+4z)^2}+a & x \geq 0 \\[1em]
\dfrac{\epsilon}{(1-z)} & x < 0
\end{cases}
\\[0.5em]
h^2w''(x) &=
\begin{cases}
2a-\dfrac{2e}{(1+z)^3}-\dfrac{96d}{(3+4z)^3}-\dfrac{8c}{(1+2z)^3}-\dfrac{32b}{(1+4z)^3} & x \geq 0 \\[1em]
\dfrac{2\epsilon}{(1-z)^3}& x < 0
\end{cases}
\end{align*}
\]
The coefficient are evaluated so that \(w(h)=1\) and \(w(0)=\epsilon\).
Wall Smooth
The Wall is a function that is
\[
w(-\infty) = 0,\qquad w(0)=\epsilon, \qquad w(h)=1,\qquad w(\infty)=\infty
\]
and grows quadratically for \(x>0\).
\[
w(x) = \dfrac{A}{2B^2}\left(\left(\frac{1}{2}+B^2x^2\right)(\erf(Bx)+1)+\dfrac{Bx}{\sqrt{\pi}}\exp(-B^2x^2)\right)
\]
Wall Piecewise
The Wall is a function that is
\[
w(x) = 0,\quad x\in(-\infty,0), \qquad w(h)=1,\qquad w(\infty)=\infty
\]
and grows quadratically for \(x>0\).
\[
w(x)=
\dfrac{1}{3}
\begin{cases}
0 & x<0 \\[1em]
z^4 ( 5 - 2z) & x